Aller au contenu principal

Nature Biomedical Engineering

  • Science de la vie

Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning

Auteurs Mijin Kim, Chen Chen, Peng Wang, Joseph J. Mulvey, Yoona Yang, Christopher Wun, Merav Antman-Passig, Hong-Bin Luo, Sun Cho, Kara Long-Roche, Lakshmi V. Ramanathan, Anand Jagota, Ming Zheng, YuHuang Wang & Daniel A. Heller


Serum biomarkers are often insufficiently sensitive or specific to facilitate cancer screening or diagnostic testing. In ovarian cancer, the few established serum biomarkers are highly specific, yet insufficiently sensitive to detect early-stage disease and to impact the mortality rates of patients with this cancer. Here we show that a ‘disease fingerprint’ acquired via machine learning from the spectra of near-infrared fluorescence emissions of an array of carbon nanotubes functionalized with quantum defects detects high-grade serous ovarian carcinoma in serum samples from symptomatic individuals with 87% sensitivity at 98% specificity (compared with 84% sensitivity at 98% specificity for the current best clinical screening test, which uses measurements of cancer antigen 125 and transvaginal ultrasonography). We used 269 serum samples to train and validate several machine-learning classifiers for the discrimination of patients with ovarian cancer from those with other diseases and from healthy individuals. The predictive values of the best classifier could not be attained via known protein biomarkers, suggesting that the array of nanotube sensors responds to unidentified serum biomarkers.

Produits associés