Skip to main content

Journal of Visualized ExperimentsCIMA

  • Life Science

Hyperspectral Imaging as a Tool to Study Optical Anisotropy in Lanthanide-Based Molecular Single Crystals

Authors Emille M. Rodrigues, Nelson Rutajoga, David Rioux, Jacob Yvon-Leroux, and Eva Hemmer

Abstract

In this work, we describe a protocol for a novel application of hyperspectral imaging (HSI) in the analysis of luminescent lanthanide (Ln3+)-based molecular single crystals. As representative example, we chose a single crystal of the heterodinuclear Ln-based complex [TbEu(bpm) (tfaa)6] (bpm=2,2’-bipyrimidine, tfaa– =1,1,1-trifluoroacetylacetonate) exhibiting bright visible emission under UV excitation. HSI is an emerging technique that combines 2-dimensional spatial imaging of a luminescent structure with spectral information from each pixel of the obtained image. Specifically, HSI on single crystals of the [Tb-Eu] complex provided local spectral information unveiling variation of the luminescence intensity at different points along the studied crystals. These changes were attributed to the optical anisotropy present in the crystal, which results from the different molecular packing of Ln3+ ions in each one of the directions of the crystal structure. The HSI herein described is an example if the suitability of such technique for spectro-spatial investigations of molecular materials. Yet, importantly, this protocol can be easily extended for other types of luminescent materials (such as micron-sized molecular crystals, inorganic microparticles, nanoparticles in biological tissues, or labelled cells, among others), opening many possibilities for deeper investigation of structure-property relationships. Ultimately, such investigations will provide knowledge to be leveraged into the engineering of advanced materials for a wide range of applications from bioimaging to technological applications, such as waveguides or optoelectronic devices.

Related Products